
[20251002] INFOFP - Functioneel programmeren -
1 - USP
Cursus: BETA-INFOFP Functioneel programmeren (INFOFP)

Tijdsduur: 2 uur

Aantal vragen: 4

69843-117483
Voorpagina - Pagina 1 van 1

[20251002] INFOFP - Functioneel programmeren -
1 - USP
Cursus: Functioneel programmeren (INFOFP)

Aantal vragen: 4

69843-117483

[20251002] INFOFP - Functioneel programmeren - 1 -

USP
Vragen - Pagina 1 van 11

In this question, we work with *lists of coefficients of a polynomial in a single variable x* where the i-th
element is the coefficient of x^i. For example, we think of the list '[2, 0, 3]' as the polynomial '2 + 0 * x
+ 3 * x^2'.

a. [3pt] Without using explicit recursion, please implement a function

degreeList :: (Eq a, Num a) => [a] -> Maybe Int

that returns the degree of the polynomial after removing trailing zeros.

Edge cases:
• If the list is empty OR all coefficients are zero, return Nothing.
• Otherwise return Just d, where d is the largest index with a nonzero coefficient.

Examples:

degreeList [] == Nothing
degreeList [0,0,0] == Nothing
degreeList [5] == Just 0
degreeList [5,0,0] == Just 0
degreeList [5,0,3,20] == Just 3
degreeList [5,0,3,20,0] == Just 3

You may use the following helper function stripZeros.

stripZeros :: (Eq a, Num a) => [a] -> [a]
stripZeros = reverse . dropWhile (== 0) . reverse

b. [5pt] Please implement a function

addListsPad :: Num a => [a] -> [a] -> [a]

that adds two coefficient lists element-wise, padding the shorter with zeros.
Clarification: This corresponds to polynomial addition. If one list ends, keep copying the remaining
coefficients of the other list.

Examples:

addListsPad [1,2,3] [4,5] == [5,7,3]
addListsPad [1,2] [4,5,6] == [5,7,6]
addListsPad [] [4,5,6] == [4,5,6]
addListsPad [1,2,3] [] == [1,2,3]
addListsPad [-1] [1] == [0]

c. [4pt] Without using recursion, please implement a function

nonZeroPositions :: (Eq a, Num a) => [a] -> [Int]

a.3 pt.

b.5 pt.

1

69843-117483

[20251002] INFOFP - Functioneel programmeren - 1 -

USP
Vragen - Pagina 2 van 11

that returns the list of indices 'i' whose coefficient is nonzero (where indices are 0-based).
Examples:

nonZeroPositions [0,3,0,5] == [1,3]
nonZeroPositions [] == []
nonZeroPositions [0,0,0] == []

d. [4pt] Please implement a function

eval :: Num a => [a] -> a -> a

that evaluates a polynomial given by its coefficients using a fold (no recursion). Your implementation
should use what is known as 'Horner's method', and satisfy:
'eval [a0,a1,..,an] x = a0 + x*(a1 + x*(... + x*an))'

Examples:

eval [5] 2 == 5
eval [5,2,3] 2 == 5 + 2*2 + 3*2^2 == 21

Not all lists of 'a's should be interpreted as polynomials. Hence, we introduce the newtype 'Poly a' to
make intent explicit.

newtype Poly a = P [a]

Consider the following 'Monoid' type class, representing an associative binary operation on values of
the same type together with a unit element.

class Monoid a where
-- | An associative operation.

(<>) :: a -> a -> a
mempty :: a

-- | A unit element for <>

e. [4pt] Define a 'Monoid' instance for polynomials that performs *coefficient-wise addition* (padding
with zeros as needed) as its binary operation. You may reuse your function from (b).

c.4 pt.

d.4 pt.

e.4 pt.

69843-117483

[20251002] INFOFP - Functioneel programmeren - 1 -

USP
Vragen - Pagina 3 van 11

We now work with a binary-search-tree-like structure where *elements live in the leaves* and internal
nodes carry only a routing key (a pivot). That key is used to direct the search; it is not itself stored as a
leaf element

data Tree a = Leaf a
| Node (Tree a) a (Tree a)

deriving (Eq, Show)

We maintain the following routing invariant (BST-style):
For any 'Node l k 'r:
• all elements in 'l' are strictly < 'k'
• all elements in 'r' are >= 'k' Elements are stored only in Leaves. The key 'k' serves as a routing pivot.

Example of a valid tree (storing integers):

Node (Leaf 1) 3 (Node (Leaf 3) 5 (Leaf 7))

It is valid because: 1 < 3 and all elements in the right subtree are >= 3. Note that the keys stored at
internal nodes do not necessarily appear as elements of the tree (e.g. 5).
a. [3pt] Please implement the following function for checking whether an element is in a binary search
tree:

member :: Ord a => a -> Tree a -> Bool

Follow the invariant above: compare against the routing key at 'Node' to decide to go left (< k) or right
(>= k); base case checks equality at 'Leaf'.
Examples:

member 3 (Leaf 3) == True
member 2 (Node (Leaf 1) 3 (Leaf 4)) == False
member 3 (Node (Leaf 1) 3 (Node (Leaf 3) 5 (Leaf 7))) == True

b. [4pt] Please complete the implementation below for the function:

toAscList :: Tree a -> [a]

that produces the elements in ascending order (inorder traversal of leaves). Preferrably your
implementation runs in linear time.

toAscList = go []
where
go acc (Leaf x) = b.(1 pt.)
go acc (Node l _ r) = c.(3 pt.)

Example:

toAscList (Node (Leaf 1) 3 (Node (Leaf 3) 5 (Leaf 7))) == [1,3,7]

c. [3pt] Please implement a function

a.3 pt.

2

69843-117483

[20251002] INFOFP - Functioneel programmeren - 1 -

USP
Vragen - Pagina 4 van 11

minOf :: Tree a -> a

that returns the leftmost leaf element (the minimum). Example:

minOf (Node (Leaf 2) 3 (Leaf 5)) == 2

d. [2pt] Please implement a function

join :: Ord a => Tree a -> Tree a -> Tree a

that given trees l and r such that every element of l is < every element of r, produce a valid BST with
height +1 by choosing a routing key appropriately. Example:

join (Leaf 1) (Leaf 3) == Node (Leaf 1) 3 (Leaf 3)

Just e. [6pt] Complete 'buildBalanced' below so that, given a non-empty sorted list of n elements (in
ascending order), it constructs a balanced binary search tree in a bottom-up manner by repeatedly
pairing adjacent trees.

Complexity requirement: The intended approach runs in linear time O(n) (bottom-up pairing), rather
than the O(n log n) of a naive top-down split-at-middle approach.

buildBalanced :: [a] -> Tree a
buildBalanced = combineByLevel . map f.(1 pt.)

where
combineByLevel :: [Tree a] -> Tree a
combineByLevel ts = case g.(2 pt.) of

[] -> error "impossible"
[root] -> h.(1 pt.)
level -> i.(1 pt.)

pairUp (l:r:rest) = j.(1 pt.) : pairUp rest
pairUp ts = ts

Examples:

Input list (sorted):
[1, 2, 3, 4]

Output tree:
Node (Node (Leaf 1) 2 (Leaf 2)) 3 (Node (Leaf 3) 4 (Leaf 4))

(3)
/ \

(2) (4)
/ \ / \

d.3 pt.

e.2 pt.

69843-117483

[20251002] INFOFP - Functioneel programmeren - 1 -

USP
Vragen - Pagina 5 van 11

1 2 3 4

Input list (sorted):
[1, 2, 3, 4, 5]

Output tree:
Node (Node (Node (Leaf 1) 2 (Leaf 2)) 3 (Node (Leaf 3) 4 (Leaf 4))) 5

(Leaf 5)

(5)
/ \

(3) 5
/ \

(2) (4)
/ \ / \

1 2 3 4

We would like to implement a function 'delete' that, if possible, removes a given element from a BST.
Your function should be total, i.e. for any valid input BST (in which every element appears at most
once) it should give a valid output; i.e. your function should not crash. Complete the following type
signature for this function 'delete'. Make sure that your function returns something of an appropriate
type.
f. [1pt] Please complete the type of delete below:

delete :: Ord a => a -> Tree a -> k.(1 pt.)

g. [5pt] Complete the following definition of 'delete'.
You may assume that the 'implementedElsewhere' function correctly handles a deletion when the
element we are deleting appears in the right subtree (i.e. when x >= k).

delete x t@(Leaf y) = l. ...(2 pt.)
delete x (Node l k r) | x < k = m.(1 pt.) (case delete x l of

n.(1 pt.) -> r
o.(1 pt.) -> Node l' k r

)
| otherwise = implementedElsewhere x l k r

69843-117483

[20251002] INFOFP - Functioneel programmeren - 1 -

USP
Vragen - Pagina 6 van 11

a. [4pt] The ADTs below are *given*.

data Pair a b = Pair a b
data Rose a = R a [Rose a]
data Foo a = A (a, Maybe a) | B (Either a (a -> a))
data Either a b = Left a | Right b

For each of the four expressions below, fill in ONLY:
• its most general Haskell type, or
• write “ill-typed” if it is not well-typed.
Do not include any derivation or explanation for this subpart.

e1 = Pair True 'x'
e1 :: a. ...(1 pt.)

e2 = R 'a' [R 'b' []]
e2 :: b. ..(1 pt.)

e3 = A (True, Just 'x')
e3 :: c. ...(1 pt.)

e4 = B (Right id)
e4 :: d. ..(1 pt.)

b. [5pt] For each function f1–f5, fill in ONLY its most general Haskell type or write “ill-typed” if it is not
well-typed. Include typeclass constraints when needed. No justification needed.

f1 x y = (x, y)
f1 :: e. ...(1 pt.)

f2 x y = if x == x then Just y else Nothing
f2 :: f. ...(1 pt.)

f3 f x ys = f x : ys
f3 :: g. ...(1 pt.)

f4 n y = const (y == y) (n + 0)
f4 :: h. ...(1 pt.)

f5 x = x + 1 == x
f5 :: i. ..(1 pt.)

c. [7pt] Give a full type inference derivation for the expression:

foldl bind

where

foldl :: (b -> a -> b) -> b -> [a] -> b

3

69843-117483

[20251002] INFOFP - Functioneel programmeren - 1 -

USP
Vragen - Pagina 7 van 11

bind :: [a] -> (a -> [b]) -> [b]

Please include key reasoning step as partial credits are awarded based on them.
j.7 pt.

69843-117483

[20251002] INFOFP - Functioneel programmeren - 1 -

USP
Vragen - Pagina 8 van 11

[12pt] For each expression below, decide whether it is *exactly evaluates* to the target list:

target = [0,2,4,6,8]

Mark your choice per expression:
A = Correct (it evaluates to target),
B = Incorrect (it does not evaluate to target),
C = Don’t know.

Scoring: +1 for a correct answer, −1 for a wrong answer, 0 for "Don't know".
Reminders:

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
zipWith _ [] _ = []
zipWith _ _ [] = []

-- This is a simplified implementation
scanl :: (b -> a -> b) -> b -> [a] -> [b]
scanl f z = foldl (\acc x -> acc ++ [f (last acc) x]) [z]

map (*2) [0..4]

a. Correct (it evaluates to target)

b. Incorrect (it does not evaluate to target)

c. Don't know

a.1 pt.

[2*x | x <- [0..10], x <= 4]

a. Correct (it evaluates to target)

b. Incorrect (it does not evaluate to target)

c. Don't know

b.1 pt.

[x*2 | x <- [0..10], even x]

a. Correct (it evaluates to target)

b. Incorrect (it does not evaluate to target)

c. Don't know

c.1 pt.

zipWith (+) [0,2,4,6,8] [0,0,0,0,0]

a. Correct (it evaluates to target)

b. Incorrect (it does not evaluate to target)

c. Don't know

d.1 pt.

4

69843-117483

[20251002] INFOFP - Functioneel programmeren - 1 -

USP
Vragen - Pagina 9 van 11

zipWith (*) [0..4] [0,2..8]

a. Correct (it evaluates to target)

b. Incorrect (it does not evaluate to target)

c. Don't know

e.1 pt.

take 5 (scanl (+) 0 [2,2,2,2,2])

a. Correct (it evaluates to target)

b. Incorrect (it does not evaluate to target)

c. Don't know

f.1 pt.

concat (map (\x -> [2*x]) [0..4])

a. Correct (it evaluates to target)

b. Incorrect (it does not evaluate to target)

c. Don't know

g.1 pt.

[0,2..8]

a. Correct (it evaluates to target)

b. Incorrect (it does not evaluate to target)

c. Don't know

h.1 pt.

map snd (zip [0..4] [0,2..10])

a. Correct (it evaluates to target)

b. Incorrect (it does not evaluate to target)

c. Don't know

i.1 pt.

[x+y | (x,y) <- zip [0..4] [0,2..8]]

a. Correct (it evaluates to target)

b. Incorrect (it does not evaluate to target)

c. Don't know

j.1 pt.

foldr (\x acc -> 2*x : acc) [] [0..4]

a. Correct (it evaluates to target)

b. Incorrect (it does not evaluate to target)

c. Don't know

k.1 pt.

69843-117483

[20251002] INFOFP - Functioneel programmeren - 1 -

USP
Vragen - Pagina 10 van 11

foldl (\acc x -> 2*x : acc) [] [0..4]

a. Correct (it evaluates to target)

b. Incorrect (it does not evaluate to target)

c. Don't know

l.1 pt.

69843-117483

[20251002] INFOFP - Functioneel programmeren - 1 -

USP
Vragen - Pagina 11 van 11

	[20251002] INFOFP - Functioneel programmeren - 1 - USP
	Cursus: BETA-INFOFP Functioneel programmeren (INFOFP)

	[20251002] INFOFP - Functioneel programmeren - 1 - USP
	Cursus: Functioneel programmeren (INFOFP)

