%;% Utrecht University

Purely Functional Data structures

Functional Programming

Utrecht University

+ Know the difference between persistent (purely functional) and ephemeral data structures,
* Be able to use persistent data structures,
+ Define and work with custom data types

* What does x: xs look like in memory?

* What does x: xs look like in memory?

* Suppose thatxs = b:c:d:[] for some b,candd

* Whatdoes xs = b:c:d:[] look like in memory?

TS

+ What does x: xs look like in memory?

TS

+ What does x: xs look like in memory?

TS

+ What does drop 2 xs look like in memory?

TS

+ What does drop 2 xs look like in memory?

TS

drop 2 xs

* Whatdoes 1 ++ xs look like in memory?

TS

* Whatdoes 1 ++ xs look like in memory?

* Whatdoes 1 ++ xs look like in memory?

{4 xs

TS

0

+ Data structures in which old versions are available are persistent data structures.

+ Traditional data structures are ephemeral.

+ Advantages of persistent data structures:
+ Convenient to have both old and new:

+ Separation of concerns;
+ Compute subexpressions independently

+ Output may contain old versions (i.e. tails)

Yes*!

Yes*!

[*] for a lot of them

+ Store an set S of ordered elements s.t. we can efficiently find successor of a query q.
* The successor of g is the smallest element in S larger or equal to q.

+ Store an set S of ordered elements s.t. we can efficiently find successor of a query q.
* The successor of g is the smallest element in S larger or equal to q.

+ Example: S = {1,4,5,8,9,20}, successor of ¢ = 7is 8.

+ Store the elements of type a in a data structure of type SuccDS a

+ What should the type of our succOf function be?

+ Store the elements of type a in a data structure of type SuccDS a

+ What should the type of our succOf function be?

succOf :: Ord a => a -> SuccDS a -> Maybe a

« |dea: Use an (unordered) list

type SuccDS a = [a]

succOf :: 0xrd a => a -> SuccDS a -> Maybe a
succOf g s = minimum' [x | x <- s, x >= q]
where

minimum' [] = Nothing

minimum' xs Just (minimum xs)

succOf :: 0xrd a => a -> SuccDS a -> Maybe a
succOf g s = minimum' [x | x <- s, x >= q]
where

minimum' [] = Nothing

minimum' xs Just (minimum xs)

* Running time: O(n)

+ |dea: Use an ordered list.

succOf q [1] = Nothing
succOf g (x:s) | x < q = succOf q s
| otherwise = Just x

+ |dea: Use an ordered list.

succOf q [1] = Nothing
succOf g (x:s) | x < q = succOf q s
| otherwise = Just x

+ Does not really help: running time is still O(n).

+ |dea: Use an ordered list.

succOf q [1] = Nothing
succOf g (x:s) | x < q = succOf q s
| otherwise = Just x

+ Does not really help: running time is still O(n).

* We need a better data structure.

+ Idea: Use a binary search tree (BST).

data Tree a = Leaf
| Node (Tree a) a (Tree a)
deriving (Show,Eq)

type SuccDS a = Tree a

+ Idea: Use a binary search tree (BST).

data Tree a = Leaf
| Node (Tree a) a (Tree a)

deriving (Show,Eq)

type SuccDS a = Tree a

« Canwe list all elementsin a Tree a?
« Canwetestifat :: Tree aisaBST?

elems i Tree a -> [a]
[]

elems 1 ++ [x] ++ elems 1

elems Leaf

elems (Node 1 x 1)

isBST ;. 0rd a => Tree a -> Bool
isBST Leaf
isBST (Node 1 x 1)

True

all (<= x) (elems 1)
&& all (>= x) (elems 1)
&& isBST 1 && isBST r

+ This implementation uses O(n?) time.

+ Exercise: write an implementation that runs in O(n) time.

succOf q Leaf Nothing

succOf g (Node 1 x r) | x < q succOf q r

| otherwise = case succOf q 1 of
Nothing -> Just x
Just sq -> Just sq

succOf q Leaf Nothing

succOf g (Node 1 x r) | x < q succOf q r

| otherwise = case succOf q 1 of
Nothing -> Just x
Just sq -> Just sq

Nice if the input tree happens to be balanced, i.e. of height O(log n)

+ Suppose that the input is a sorted list, how to build a balanced tree?

20

+ Suppose that the input is a sorted list, how to build a balanced tree?

buildBalanced :: [a] -> Tree a
buildBalanced [] Leaf
buildBalanced xs = Node 1 x r

wherxe

m = length xs ‘div" 2

(1s,x:xrs) = splitAt m xs

buildBalanced 1s
buildBalanced rs

1
T

* Running time: O(n logn).

20

« Can we add new elements to the set S?

21

« Can we add new elements to the set S?

insert ;2 0rd a => a -> Tree a -> Tree a
insert x Leaf = Node Leaf x Leaf
insert x t@(Node 1 y 1)

| x <y = Node (insert x 1) y r
|X== =t
| otherwise = Node 1 y (insert x r)

21

« Can we add new elements to the set S?

insert ;2 0rd a => a -> Tree a -> Tree a
insert x Leaf = Node Leaf x Leaf

insert x t@(Node 1 y 1)

| x <y = Node (insert x 1) y r
|X== =t
| otherwise = Node 1 y (insert x r)

* Notjustinsert x 1!

* Note that we are building new trees!

21

* Repeatedly inserting elements unbalances the tree

> foldr insert Leaf [1..5]
Node (Node (Node (Node (Node Leaf 1 Leaf) 2 Leaf) 3 Leaf) 4 Leaf) 5 Leaf

* Properties:

1) leaves are black

2) rootis black

3) red nodes have black children

4) for any node, all paths to leaves have the same number of black children.

23

*+ Properties:

1) leaves are black

2) rootis black

3) red nodes have black children

4) for any node, both children have the same blackheight

* blackHeight of a node = number of black children on any path from that node to its leaves.

24

* Properties:

1) leaves are black

2) rootis black

3) red nodes have black children

4) for any node, both children have the same blackheight

* Support queries and updates in O(log n) time.

25

data Color = Red | Black deriving (Show,Eq)

data RBTree a = Leaf
| Node Color (RBTree a) a (RBTree a)
deriving (Show,Eq)

+ Enforces property 1. Other properties are more difficult to enforce in the type.

26

* succOf more or less the same as before.

* Insert:
+ Make sure black heights remain ok by replacing a black leaf by a red node.
+ The only issue is red,red violations.
+ Allow red,red violations with the root, but not below that.

* Recolor the root black at the end.

27

insert :: 0rd a => a -> RBTree a -> RBTree a

insert x = blackenRoot . insert' x

28

insert :: 0rd a => a -> RBTree a -> RBTree a

insert x = blackenRoot . insert' x

blackenRoot .. RBTree a -> RBTree a
blackenRoot Leaf Leaf
blackenRoot (Node Node Black 1 y r

lyr)

insert' :: Ord a => a -> RBTree a -> RBTree a

28

insert' :: 0rd a => a -> RBTree a -> RBTree a

insert' x Leaf = Node Red Leaf x Leaf

29

insert' :: 0rd a => a -> RBTree a -> RBTree a

insert' x Leaf = Node Red Leaf x Leaf

insert' x t@(Node c 1y 1)
| x <y
| x ==y
| otherwise = Node c 1 y (insert' x 1)

Node c (insert' x 1) y r
t

29

insert' :: 0rd a => a -> RBTree a -> RBTree a

insert' x Leaf = Node Red Leaf x Leaf

insert' x t@(Node c 1y 1)
| x <y
| x ==y
| otherwise = Node c 1 y (insert' x 1)

Node c (insert' x 1) y r
t

As before, this creates an unbalanced tree. So, what's left is to rebalance the newly created trees.

29

insert' :: 0rd a => a -> RBTree a -> RBTree a
insert' x Leaf = Node Red Leaf x Leaf

insert' x t@(Node c 1 y 1)
sy
== 8 T

| x balance c (insert' x 1) y r
| x
I

otherwise = balance ¢ 1 y (insert' x 1)

30

insert' :: 0rd a => a -> RBTree a -> RBTree a
insert' x Leaf = Node Red Leaf x Leaf

insert' x t@(Node c 1 y 1)
sy
== 8 T

balance c (insert' x 1) y r

otherwise = balance ¢ 1 y (insert' x 1)

balance :: Color -> RBTree a -> a -> RBTree a -> RBTree a

30

+ The only potential issue is two red nodes near the root.

+ There are only four configurations:

Ci A
S LAcn

31

* Make the root red, and its children black:

32

* Make the root red, and its children black:

balance Black (Node Red (Node Red a x b) y c) z d =

Node Red (Node Black a x b) y (Node Black c z d)

32

Rebalancing code

+ Other cases are symmetric:

balance Black (Node Red (Node Red a x b) y c)
Node Red (Node Black a x b) y (Node Black c z d)
balance Black (Node Red a x (Node Red b y c))
Node Red (Node Black a x b) y (Node Black c z d)

N
o
1

N
o
I

balance Black a x (Node Red (Node Red b y c) z d) =
Node Red (Node Black a x b) y (Node Black c z d)
balance Black a x (Node Red b y (Node Red c z d)) =
Node Red (Node Black a x b) y (Node Black c z d)

33

Rebalancing code

+ Other cases are symmetric:

balance Black (Node Red (Node Red a x b) y c)
Node Red (Node Black a x b) y (Node Black c z d)
balance Black (Node Red a x (Node Red b y c))
Node Red (Node Black a x b) y (Node Black c z d)

N
o
1

N
o
I

balance Black a x (Node Red (Node Red b y c) z d) =
Node Red (Node Black a x b) y (Node Black c z d)
balance Black a x (Node Red b y (Node Red c z d)) =
Node Red (Node Black a x b) y (Node Black c z d)

balance ¢ 1 x 1 =

Node ¢ 1 x 1

33

« What if we also want to remove elements from S?

34

« What if we also want to remove elements from S?

+ Possible in O(log n) time with Red-Black trees, but a bit more messy.

34

+ Self balancing BST Implementation available in Data. Set

+ Often useful to store additional information: Data.Map.

lookup :: Ord k => k -> Map k v -> Maybe v

85

+ Self balancing BST Implementation available in Data. Set

+ Often useful to store additional information: Data.Map.

lookup :: Ord k => k -> Map k v -> Maybe v

+ Finite Sequences: Data. Sequence, allow fast access to front and back.

85

Data structures in the Haskell Standard Library

+ Self balancing BST Implementation available in Data.Set

+ Often useful to store additional information: Data.Map.

lookup :: Ord k => k -> Map k v -> Maybe v

* Finite Sequences: Data. Sequence, allow fast access to front and back.

+ All these data structures are persistent.

35

+ Can we quickly find the platform directly below Mario at (z, y)?

(z,y)

1

36

Example Application: Point Location

« Can we quickly find the platform directly below Mario at (z, y)?

(2, y)

+ Easy if we had the platforms intersecting the vertical line at in top-to-bottom order in a

Set or Map: find successor of ¥.

37

Example Application: Point Location

» Can we quickly find the platform directly below Mario at (z, y)?

(z,9)

+ What happens when vertical line starts/stops to intersect a platform?

38

Example Application: Point Location

» Can we quickly find the platform directly below Mario at (z, y)?

+ What happens when vertical line starts/stops to intersect a platform?

39

Example Application: Point Location

» Can we quickly find the platform directly below Mario at (z, y)?

+ What happens when vertical line starts/stops to intersect a platform?

40

+ Can we quickly find the platform directly below Mario at (z, y)?

+ What happens when vertical line starts/stops to intersect a platform?

41

+ Can we quickly find the platform directly below Mario at (z, y)?

+ What happens when vertical line starts/stops to intersect a platform?

+ Add or remove a platform from the Set

41

+ Can we quickly find the platform directly below Mario at (z, y)?

+ What happens when vertical line starts/stops to intersect a platform?
+ Add or remove a platform from the Set

+ Since Set is persistent, old versions remain in tact. Store them in a Map.

41

Example Application: Point Location

Can we quickly find the platform directly below Mario at (z, y)?

What happens when vertical line starts/stops to intersect a platform?
Add or remove a platform from the Set
Since Set is persistent, old versions remain in tact. Store them in a Map.

To answer a query: go to the version at time x using a successor query, and find successor of

Y.

41

* Write a function validRBTree :: RBTree a -> Bool that checks if a given RBTree a
satisfies all red-black tree properties.

42

